Publication
Title
Scent detection of Brucella abortus by African giant pouched rats (Cricetomys ansorgei)
Author
Abstract
Background Brucellosis is a contagious zoonosis caused by bacteria of the genus Brucella. While the disease has been eradicated in most developed countries, it remains endemic in sub-Saharan Africa where access to reliable diagnostics is limited. African giant pouched rats (Cricetomys ansorgei) have been trained to detect the scent of Mycobacterium tuberculosis to increase case detection in sub-Saharan Africa. Given the similar diagnostic challenges facing brucellosis and tuberculosis, we explored the feasibility of training African giant pouched rats to detect Brucella.Results After 3 months of training, rats reliably identified cultured Brucella, achieving an average sensitivity of 93.56% (SD = 0.650) and specificity of 97.65% (SD = 0.016). Rats readily generalized to novel, younger Brucella cultures that presumably generated a weaker volatile signal and correctly identified at least one out of three fecal samples spiked with Brucella culture during a final test of feasibility.Discussion To our knowledge, these experiments are the first to demonstrate Brucella emits a unique odor profile that scent detection animals can be trained to identify. Importantly, cultured E. coli samples were included throughout training and test to ensure the rats learned to specifically identify Brucella bacteria rather than any bacteria in comparison to bacteria-free culture medium. E. coli controls therefore served a crucial function in determining to what extent Brucella abortus emits a unique odor signature. Further research is needed to determine if a Brucella-specific volatile signature is present within clinical samples. If confirmed, the present results suggest trained rats could serve as a valuable, novel method for the detection of Brucella infection.
Language
English
Source (journal)
BMC veterinary research. - London
Publication
London : 2023
ISSN
1746-6148
DOI
10.1186/S12917-023-03786-Y
Volume/pages
19 :1 (2023) , p. 1-14
Article Reference
226
ISI
001093305600002
Pubmed ID
37904151
Medium
E-only publicatie
Full text (Publisher's DOI)
Full text (open access)
UAntwerpen
Faculty/Department
Research group
Publication type
Subject
Affiliation
Publications with a UAntwerp address
External links
Web of Science
Record
Identifier
Creation 04.12.2023
Last edited 04.11.2024
To cite this reference